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Executive Summary 

 Pedestrians are vulnerable road users in multi-modal transportation systems, and pedestrian 

safety has been addressing more attention recently under the trend of green travel and smart city 

applications. However, the percentage of pedestrian fatalities increases by 3% in the past decade 

while the total traffic fatality decreases. Specifically, bus-to-pedestrian collisions often result in 

severe injuries, fatalities and huge insurance losses. According to Washington State Transit 

Insurance Pool, a large portion of the large collision-related transit insurance costs involve 

pedestrians in the Washington region. To a large extent, this is due to the lack of vehicle-to-

pedestrian accident data. Researchers have been aware of this issue and trying to find surrogate 

safety measures. Near-miss is the major surrogate measure; and in order to extract sufficient near-

miss events, a huge amount of data needs to be processed. For different data sources, it requires 

different automated near-miss detection methods. Onboard monocular vision system has been 

widely deployed in both public and personal vehicles. This data is cost-effective compared to 

onboard multiple-sensor systems or surveillance videos taken at fixed locations. But extracting 

events from onboard monocular vision is very challenging, and few works have been done.  

 This study fills the gap by proposing a framework to automatically detect bus-to-pedestrian 

near-misses through onboard monocular vision with real-time processing speed. The proposed 

detection framework has a different processing logic from previous vehicle-to-pedestrian conflict 

studies. First, our framework does not handle the complex background information in the moving 

onboard video directly. Instead, it tries to locate the pedestrians based on the vision pattern. After 

the pedestrian being detected and tracked, we conduct the calculation in the 3D real-world 

coordinate instead of the 2D image coordinate as in previous studies. In the 2D image space, no 
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real-world value can be obtained. Specifically, our framework has four main stages: pedestrian 

detection in onboard video, motion estimation in the image coordinate, relative position, and speed 

calculation in the real-world coordinate, and near-miss detection. In the first stage, the well-known 

Histogram-of-gradient pedestrian detector is used to detect pedestrian within the camera vision. In 

the second stage, interest points inside the detected bounding box of a pedestrian are tracked with 

sparse optical flow method. Thus, the motion of the pedestrian in the image coordinate can be 

estimated. In the third stage, with several camera parameters known and the assumption that the 

pedestrian detected is on the same plane with the vehicle, pedestrian’s relative position and relative 

speed to the vehicle in the 3D real-world coordinate can be calculated. In the fourth stage, several 

near-miss indicators are used to determine if there is a potential bus-to-pedestrian near-miss event. 

 The results turn out to be reasonably good by comparing with the events detected by a 

commercial system, which has multiple camera sensors installed. We have run the system on over 

one-month data, and the overall performance is promising. Over 30 hours of data have been 

examined in detail for quantified evaluation. The system processes in a nearly real-time manner 

and yields over 85% detection overlap rate with the detected events from a well-developed 

MobilEye Shield+ system. Two additional experiments are conducted to explore the applications 

of the proposed framework in solving practical traffic safety problems. With the findings and 

accomplishments in this project, an increasing amount of traffic safety data and a variety of 

practical applications are expected in the near future to support and advance traffic safety research.  
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Chapter 1 Introduction 

 According to a report published by National Highway Traffic Safety Association (NHTSA) 

in 2015 (NHTSA, 2015), the number of total motor vehicle fatalities in the U.S. keeps decreased 

from 42,836 in 2004 to 32,719 in 2013. However, the annual number of pedestrian fatalities 

remained at the about the same level during the past decade. As a result, pedestrian fatalities as a 

percentage of total fatalities increased from 11% to 14%. And according to Washington State 

Transit Insurance Pool (WSTIP), despite pedestrian-involved accidents are relatively rare, they 

cause a large portion of insurance losses in the transit industry. More research is definitely needed 

to enhance pedestrian safety. Traditional traffic safety research normally relies on data about 

collisions. But collisions are rare events when considered in the context of normal measures of 

travel (Ismail et al., 2009). Other data measures of pedestrian activity such as pedestrian volume 

or speed are relatively rarely available compared with data for motor vehicle use. Consequently, 

the lack of appropriate pedestrian data makes it very challenging to draw solid conclusions on 

pedestrian safety improvements. 

 Researchers and engineers are aware of the lack of pedestrian collision data and started 

looking for surrogate safety measures. Despite slightly differing definitions in several studies, 

these surrogate events are commonly called near-misses. A near-miss is the conflict between road 

users that requires sudden evasive action and has the potential to develop into a collision. 

Collisions and near-miss events both can be used to measure the safety of certain locations or 

scenarios. (Guo et al., 2010) Near-misses have attracted more attention and have the potential to 

be used to explore factors that influence pedestrian safety. Research findings in this area will 

encourage a walking-friendly environment. 
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 Near misses must be detected and extracted from specific data sources. Typically, the data 

sources for near-miss extraction will include records spanning a long time period, such as video 

records (Ismail et al., 2009; Laureshyn et al., 2010), records from in-vehicle sensors (Matsui et al., 

2013), or even output from a simulation model of a certain location (Gettman and Head, 2003). 

Initially, surrogate safety measures were extracted manually, which was very inefficient and 

inaccurate (Chin and Quek, 1997; Guo et al., 2010; Zegeer and Deen, 1977). Recently, automated 

near-miss detection methods have been proposed in several studies, but few of them have used 

onboard monocular cameras (Ismail et al., 2009; Laureshyn et al., 2010; Matsui et al., 2013; 

Gettman and Head, 2003). 

 There are several advantages in using onboard monocular cameras as near-miss sensors: 

compared with surveillance video cameras which are installed at fixed locations with limited view 

coverage, onboard cameras are moving vision sensors that cover much larger areas; compared with 

using multiple in-vehicle sensors such as GPS units, radar sensors, and stereo vision systems, 

onboard monocular cameras are much cheaper, but may need more sophisticated algorithms to 

reach similar performance. Considering that many personal vehicles and public buses have 

installed onboard monocular cameras as standalone driver recorders, the recorded videos have 

huge potential to be turned into valuable datasets for traffic safety research. Since most developed 

traffic safety models require large volumes of data, the large number of existing onboard videos 

may be effective data sources if automated near-miss detection methods can be properly developed. 

 However, challenges do exist in near-miss detection in monocular cameras. First, with the 

moving background and moving foreground in the video, traditional background segmentation 

methods would not work as well as for stationary roadway surveillance videos (Zhang et al., 2007); 

also, in onboard front-facing cameras, the background points in different locations of a video frame 
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do not share a similar motion, thereby identifying background points using “similar motion 

criterion” would get inaccurate results (Ke et al., 2017). With the recent progress in vision-based 

pedestrian detection and tracking, several studies have been completed showing that pedestrian 

detection and tracking algorithms could be potentially applied in vehicle-to-pedestrian collision 

avoidance and near-miss detection. However, these studies performed all calculations using two-

dimensional image coordinates instead of real-world coordinates. Consequently, it was impossible 

for those algorithms to calculate real near-miss indicators, such as time-to-collision (TTC). To 

develop the correspondence between image coordinate and real-world coordinate, information 

from an extra dimension must be added. Two well-known methods use range measuring sensors 

such as radar or stereo vision, which tend to require expensive hardware. (Mori et al. 2007; Tsuji 

et al., 2002) 

 In this study, we propose a novel framework to extract bus-to-pedestrian near-misses from 

onboard monocular cameras automatically. This framework is composed of four main stages: 1) 

pedestrian detection, 2) motion estimation, 3) bus-to-pedestrian relative position and speed 

calculation, and 4) near-miss detection. In pedestrian detection, we made use of the well-known 

histogram of gradient (HOG) pedestrian detector. (Dalal and Triggs, 2005) A Kanade-Lucas-

Tomasi (KLT) interest points tracker (Lucas and Kanade, 1981) is applied to track interest points 

inside the detection region to estimate the motion of the pedestrian in image coordinates. In the 

third stage, a camera model is built to find the correspondence between image coordinates and 

real-world coordinates. Then the relative position and relative speed can be calculated in real-

world coordinates. Finally, using several defined thresholds, near-miss events can be detected and 

extracted from video clips. Our literature review did not reveal any significant published work 

about bus-to-pedestrian near-miss or conflict detection using onboard monocular videos. The work 
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described in this report appears to be among the first efforts. Our study addresses several 

challenging issues including the moving video background issue, depth estimation, and real-world 

motion information extraction only using monocular video. 
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Chapter 2 Literature Review 

2.1 Surrogate Safety Measures 

 Research on surrogate safety measures for pedestrian collisions has been on-going for 

several decades. Research initially focused on vehicle-to-vehicle near-misses on highways. 

(Zegeer and Head, 1977) In terms of research objective, previous studies can be roughly divided 

into two categories: development of traffic near-miss (conflict) analysis frameworks (Laureshyn 

et al., 2013; Matsui et al., 2013; Minderhoud and Bovy, 2001; Chin and Quek, 1997; Guo et al., 

2010; Zegeer and Deen, 1977; Gettman and Head, 2003) and automated near-miss (conflict) 

detection methods. (Ismail et al., 2009; Guo et al., 2010; Tsuji et al., 2002; Kaparias et al., 2010; 

Ismail et al., 2010; Malkhamah et al., 2005; Wannige and Sonnadara, 2010; Kataoka et al., 2013) 

 Most analysis frameworks include time-to-collision (TTC) as a main indicator, although 

other indicators may be involved. There is, however, a lack of standard definitions for the indicator 

and analysis framework (Chin and Quek, 1997). Minderhoud et al. described two extended TTC 

measures for road traffic safety assessment (Minderhoud and Bovy, 2001). These two indicators 

consider the full course of vehicles over time and space, thereby giving a more comprehensive 

picture. 

 

2.2 Vehicle-to-Pedestrian Near-Miss Extraction 

 When traffic near-miss studies were first conducted, data was manually collected (Chin 

and Quek, 1997; Guo et al., 2010; Zegeer and Deen, 1977). There are three main disadvantages in 

manual data collection: first, it is very time consuming for one or several people to stand at a 

specific location or go through recorded videos to find the near-miss events; second, different 

people have different judgements of what constitutes a near-miss event, it is very hard to guarantee 
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the accuracy; third, it is impossible to quantitatively obtain safety measures of an event. As the 

demand for surrogate safety data has been increasing, the manual collection is no longer practical.  

 Ismail et al. developed an efficient method for vehicle-to-pedestrian near-miss detection 

using surveillance video data (Ismail et al., 2009). Their work is one of the key milestones in this 

field since their method could potentially be applied to all roadway surveillance videos. 

Malkhamah et al. developed an automatic method of safety monitoring using loop data 

(Malkhamah et al., 2005). Since loop data is still the main data source for traffic monitoring, this 

work makes it possible to detect conflicts on major freeways and arterials. However, loop detectors 

and video surveillance cameras installed at fixed locations limit safety monitoring to only those 

locations. Detectors installed on vehicles can monitor safety situation at many locations or along 

specific routes of interest. Some research has been conducted focusing on near-miss detection 

using onboard sensors. Tsuji et al. developed a system working in both day and night (Tsuji et al., 

2002). They incorporate multiple sensing technologies including a stereo vision system which, 

however, is more expensive than a monocular camera. Several studies used vehicle-to-pedestrian 

conflict detection through monocular vision (Wannige and Sonnadara, 2010; Kataoka et al., 2013), 

but their methods still work in the 2D image space due to their logical frameworks. Thus, they are 

actually not able to calculate near-miss indicators. 
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Chapter 3 Study Site/Data 

 Data were collected on a King County Metro transit bus operating in downtown Seattle. 

Figure 3.1(a) replays the map of the bus trip on May 20, 2016. Onboard video data is collected by 

a Rosco Dual-Vision monocular camera and recorder system. The Rosco/MobilEye Shield Plus 

system is a vision-based vehicle, pedestrian, and bicyclist collision warning system designed for 

buses. This system has four cameras installed on the bus and can detect vehicle-pedestrian conflict 

events. The camera-based Shield+ system does not record video. However, the system detects 

potential collisions with pedestrians and vehicles based on time to collision and issues alerts and 

warnings to bus drivers using visible and audible indications. Events triggering the system are 

time-stamped, geolocated, coded, and transmitted to a server using a 3G telematics unit. Our 

method uses video from the Rosco onboard front-facing monocular camera (see Fig. 3-1(b)), and 

our results are compared with the Rosco/MobilEye Shield+ system’s event data. The video for 

testing our method has a resolution of 640 × 480 pixels (width × height), and a frame rate of 7.5 

frames-per-second (fps). 

 

(a) (b)
 

Figure 3.1 (a) Map of King County Metro May 20, 2016 bus trip.  (b) Sample frame from the 

front-facing video Dual-Vision camera. 
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Chapter 4 Methodology 

 The proposed detection framework (see Figure 4.1) has a different processing logic from 

previous vehicle-to-pedestrian conflict studies. Our framework does not handle the complex 

background information in the moving onboard video, but locates the pedestrian directly. Also, 

after the pedestrian is detected and tracked, we conduct the calculation in real-world coordinates 

instead of image coordinates. In the first stage, the HOG pedestrian detector is used to detect 

pedestrians within the camera’s vision (Dalal and Triggs, 2005); in the second stage, the rectangle 

representing the pedestrian is tracked using KLT, (Lucas and Kanade, 1981) allowing the motion 

of the pedestrian to be estimated in image coordinates. In the third stage, with several camera 

parameters known, and the assumption that the pedestrian detected is on the same plane with the 

vehicle, the pedestrian’s relative position and relative speed to the vehicle in 3D real-world 

coordinates can be calculated; in the fourth stage, several thresholds such as TTC need to be set to 

determine if there is a potential bus-to-pedestrian near-miss event. 

4.1 Pedestrian Detection in Onboard Monocular Video 

 Pedestrian detection often plays a key role in multi-modal transportation engineering. 

Efficient and accurate pedestrian detection approaches would benefit traffic surveillance from 

many perspectives. Pedestrian detection is mainly based on the unique features of pedestrians. 

Generally, there are three types of single features used in pedestrian detection: gradient-based 

features, shape-based features, and motion-based features (Dollar et al., 2012). Motion-based 

features are not suitable for pedestrian detection in onboard videos as a single feature due to the 

complicated motion of traffic scene which is composed of moving background, and road users 

with random movements. Gradient-based and shape-based features are more suitable in our case. 

Our framework has an advantage that it is designed for a wide range of pedestrian detectors as 
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long as they are based on the pedestrian pattern instead of motion information. In this paper, HOG 

is implemented as the pedestrian detector and the candidate pedestrian windows are identified 

using the sliding window approach. The input of the pedestrian detection is a video frame and the 

output is rectangle window(s) representing the pedestrian(s). In order for the following description, 

we denote 𝑝1_𝑖𝑚𝑔 the point where the detected pedestrian’s feet on. In other words, 𝑝1_𝑖𝑚𝑔is the 

midpoint of the pedestrian candidate window’s bottom edge. 
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Figure 4.1 The proposed framework for bus-to-pedestrian near-miss detection through onboard 

monocular vision 
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4.2 Motion Estimation 

 In traffic video analysis, KLT tracker is very effective and has been widely used in motion 

analysis not only in surveillance videos with fixed background (Ismail et al., 2009, Kanhere et al., 

2010) but also in aerial videos with moving background (Ke et al., 2016, Shastry and 

Schowengerdt, 2005). However, in onboard monocular videos, background motion is much more 

complex than that in either surveillance videos or aerial videos. Thus, instead of tracking points in 

the background and clustering them, in our framework, only those interest points in the detected 

region are tracked thereby background motion does not need to be handled. Basically, the average 

motion of those tracked points represents the relative motion of the detected pedestrians to the 

vehicle in the image coordinate. If m denotes the average motion of all the interest points within 

the rectangle, and 𝑝2_𝑖𝑚𝑔 denotes the location of the pedestrian in the next frame (see Figure 4.1), 

we have 

𝑝2_𝑖𝑚𝑔 = 𝑝1_𝑖𝑚𝑔 + 𝑚.                                                                (1) 

4.3 Relative Position and Speed Estimation 

 With the pedestrian detected and motion m obtained, we developed a method to calculate 

the relative position and speed through monocular vision. In the image coordinate, as defined in 

the last sub-section, 𝑝1_𝑖𝑚𝑔  and 𝑝2_𝑖𝑚𝑔  are the pedestrian locations in two frames (see Figure 

4.2(a)). We calculate their corresponding points (see Figure 4.2(b)) in the top-view of the real-

world coordinate through a camera model as follows.  

 Let 𝐶(𝑢0, 𝑣0) be the center of the image coordinate and (𝑢1, 𝑣1) is the position of 𝑝1_𝑖𝑚𝑔, 

then  

𝑑𝑢 = 𝑢1 − 𝑢0                                                                    (2) 

𝑑𝑣 = 𝑣1 − 𝑣0,                                                                                                (3) 
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where du and dv are the differences between 𝑝1_𝑖𝑚𝑔 and the image center. 

 To find the correspondence, four camera parameters are needed: camera focal length f, 

pixel length l, camera installation height h, and camera tilt angle θ. In the top-view of the real-

world coordinate, the origin O(0,0) is the camera center, whose location and motion are basically 

the same as the vehicle. Points 𝑝1_𝑤𝑙𝑑 and 𝑝2_𝑤𝑙𝑑 are the correspondences of 𝑝1_𝑖𝑚𝑔 and 𝑝2_𝑖𝑚𝑔, 

respectively. Let x1 and y1 be the x-coordinate and y-coordinate of 𝑝1_𝑖𝑚𝑔. Then, x1 and y1 are 

related to du and dv by the following equations: 

ϕ = arctan (
𝑙 × 𝑑𝑣

𝑓
) + 𝜃,                                                     (4) 

where ϕ is the angle between the ground and the line connecting 𝑝1_𝑤𝑙𝑑 and O(0,0). Thus, the 

depth value y1 can be obtained, that is, 

𝑦1 =
ℎ

arctan (𝜙)
.                                                                  (5) 

Then, with y1 and du known, x1 can be computed by the relation 

𝑥1 =
𝑙 × 𝑑𝑢

𝑓
× 𝑦1.                                                                  (6) 

In this way, the relative position of the pedestrian to the vehicle is obtained. Similar to the 

calculation of x1 and y1, x2 and y2 can be calculated. Let fr be the frame rate, then the relative speed 

v between pedestrian and the vehicle is 

𝑣 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 × 𝑓𝑟.                                                 (7) 

Specifically, for relative speed components vx and vy in the x-axis and y-axis respectively, we have 

𝑣𝑥 = (𝑥2 − 𝑥1) × 𝑓𝑟,                                                           (8) 

𝑣𝑦 = (𝑦2 − 𝑦1) × 𝑓𝑟.                                                           (9) 

 



12 

dv

du

C(u0,v0)

u

v

p1_img(u1,v1)

p2_img(u2,v2)

m

(a) (b)

O(0,0)

p1_wld(x1,y1)

x

y

p2_wld(x2,y2)

p3_wld(x3,0)

vy

vx

-T T

 

Figure 4.2 Method to find the correspondence between image coordinates and real-world 

coordinates. 

 

Near-miss Detection 

 With the relative position and speed estimated through monocular vision, events can be 

judged by calculating near-miss indicators. The most commonly used indicator is TTC (2-5) and 

we also use TTC as the major near-miss indicator in this study, which can be obtained with the 

following equation 

𝑇𝑇𝐶 =
𝑦1

𝑣𝑦
,                                                                      (10) 

where y1 is the y-coordinate of the detected pedestrian in the real-world coordinate (see Figure 

4.2(b)).  

 However, Eq. (10) alone is not sufficient to determine whether there is a near-miss, because 

even if the value got by Eq. (10) is very small, it is possible the horizontal component of the relative 

speed, i.e., vx, is very large so that the pedestrian would not hit the vehicle following the current 

moving direction. Thus, another indicator is needed to be set to judge if the conflict will happen 
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following the current relative speed on the x-axis. We define this indicator as distance-to-safety 

(DTS), which can be calculated as follows 

𝐷𝑇𝑆 = 𝑣𝑥 ×
𝑦1

𝑣𝑦
.                                                             (11)  

Therefore, if both TTC and DTS are within their respective ranges for near-miss detection, i.e., 

TTC < TTCthreshold and –T < DTS < T, where TTCthreshold and T are the thresholds. T is shown in 

Figure 4.2(b), and it should be set no smaller than half of the vehicle width. 
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Chapter 5 Results 

 More than 30 hours of onboard monocular video data were used to test the performance of 

the proposed near-miss detection method. Figure 5.1 shows two representative samples identified 

as near-misses by our system. In (a), the vehicle was approaching a stop sign when two pedestrians 

were crossing the street. One of the pedestrians was detected as having the potential to collide with 

the vehicle if no evasive action was taken. In (b), a pedestrian standing at a bus stop was detected 

when the bus approached the stop and changed lanes.  

 Video detection results are compared with events logged by the Rosco/MobilEye Shield+ 

system with multiple camera sensors. Different TTC thresholds are used in the experiments, and 

the results are presented in Table 5.1. In general, the corresponding detection overlap rate (Overlap 

rate = (NTotalDetection － NDifferentDetection) / NTotalDetection) between the two systems ranges from 81.5% 

to 90.7%, with an average overlap rate of 86.9%. The largest overlap rate occurs when the TTC 

threshold is set to 2s. The results show that our video system detects the majority of near-misses 

picked up by the Shield+ system, but the difference still exists. We manually checked those video 

clips showing events that are not detected by both systems at the same time. Generally, we find 

there are three main reasons: 

1) Some events occur at the side of the bus, and these events are not recorded by the onboard 

monocular camera. These events cannot be detected by our system because the target object 

(i.e., the pedestrian) does not appear in the view of the front-facing camera. 

2) Some events detected by our system involve a pedestrian running towards the front of a 

stopped bus; a bus with no speed deactivates the Rosco/MobilEye system’s bus-to-

pedestrian near-miss detection function but the relative motion calculated by our system 

still indicates a potential conflict. 
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3) Some interest points inside the detected rectangle may come from objects other than the 

pedestrian such as corner points of lane markings, which could result in inaccurate motion 

estimation. 

 

Table 5.1 Summary of the comparison results with the Rosco/MobilEye Shield+  system 

TTCthreshold 4s 3s 2s 1s 

Number of different detections 20 10 4 1 

Number of total detections 108 81 43 8 

Detection overlap rate 81.5% 87.7% 90.7% 87.5% 

 

 

 

 

Figure 5.1 Sample frames showing the representative near-miss events detected by the proposed 

system. 
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Chapter 6 Application of the Framework for Near-Miss Hotspot Identification 

 Besides safety surrogate data collection, another purpose for developing a cost-effective 

bus-to-pedestrian near-miss detection framework is to automatically identify hotspots and 

geographic distributions of events, to help drivers anticipate potential collisions in higher-risk 

locations. With the event data collected by our system, several plots displaying the distribution of 

the events are shown in Figure 6.1. It can be seen that most events occur at the right of the vehicle. 

This is reasonable since when a vehicle travels on the roadway, normally pedestrians appear to the 

right of it; the left of the vehicle is traffic moving along the opposite direction thereby few 

pedestrians appear. However, at intersections, pedestrians are likely to appear at different spots 

(rather than just right of the vehicle) from the driver’s perspective. By manually checking those 

frames with near-misses occurring at the left or middle of the vehicle, we find most of them do 

occur at intersections. For example, an event may occur when a left-turning vehicle has a conflict 

with a pedestrian crossing the street.  

 Also, we can see that the region with densest events are different in the image coordinate 

((a), (b)) and the real-world coordinate ((c), (d)): the densest region in the image coordinate is the 

top right region, but in the real-world coordinate it is the bottom right region. That is to say, most 

near-misses occur at a relatively farther distance to the vehicle in the image coordinate intuitively, 

but closer to the vehicle in the real-world coordinate. This result is surprising at first glance, but 

the reason is that in the image coordinate, objects of the same size at a farther distance to the 

camera occupy fewer pixels than those closer; in other words, a pixel represents larger real-world 

size at a farther location to the camera. Thus, although the fact is more near-miss events occur in 

the region closer to the vehicle, it looks like more near-misses occur at a relatively farther distance 
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in the image space. These findings may help drivers improve driving behavior and overall safety 

by knowing the distribution of near-misses. 

 

(c) (d)

(a) (b)

 

Figure 6.1 Scatter plots and heat maps showing the distribution of near-misses in image 

coordinates (a) and (b) and top-view of real-world coordinates, (c) and (d). 
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Chapter 7 Application of the Framework for Evaluating Emerging Technologies 

Due to the cost-effectiveness of the proposed near-miss detection framework, it becomes a 

potential tool to assist in efficiently evaluating emerging technologies in intelligent transportation 

systems and autonomous driving. We explore this potential by using the framework to evaluate 

the detection performance of the Rosco/MobilEye Shield+ collision avoidance system. 

Specifically, we collect over 10 TB of monocular video data and bus-to-pedestrian near-miss 

events data on 38 transit buses equipped with the Shield+ system. The main purpose of our 

proposed framework/system in the evaluation process is data reduction. With proper parameters 

settings in our system, the system is able to efficiently reduce over 99% of the videos and only 

keep those with possible bus-to-pedestrian near-misses. With another round of manual checking 

by traffic safety experts, the bus-to-pedestrian near-miss detection performance of any collision 

avoidance system can be estimated. The two main metrics we use in the evaluation are false-

positive (FP) rate and false-negative (FN) rate, which are standard measures of a detector. In this 

study, a FP is defined as a situation where the detector incorrectly indicates a presence of a near-

miss event, and a FN indicates a missed near-miss event by the collision avoidance system.  

It is important to determine how to define a false positive (FP) and false negative (FN) in 

order to maximize the identification accuracy. As aforementioned, the major indicator in our 

framework for near-miss detection is TTC. In order to set an appropriate TTC threshold for 

evaluation, we define a detection overlap rate (OR) to find the TTC threshold that would maximize 

OR, which is described with Eq. (12), 

 

𝑂𝑅 =
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
                                                                      (12) 
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where A and B are the sets of detections by each of the two technologies, i.e., our system and 

Shield+ system (see Figure 7.1). OR ranges from 0 to 1, and a larger OR would indicate a better 

TTC threshold with our tool to approximate the detection performance of Shield+ system. We have 

tested TTC threshold values from 1s to 5s, and find that 2s results in the largest OR about 0.9, 

which basically indicates 90 percent of the total events detected by either one of the two systems 

are also detected by both systems. However, in the practical evaluation process, we suggest setting 

the thresholds a little larger than 2s. Especially considering that the evaluation process includes 

both automatic detection and manual checking, setting the TTC larger would significantly reduce 

the probability of missing an event.  

  The identification of FP’s is described in this paragraph. We run our framework on 

video clips labeled with events. If the Shield+ collision avoidance system also detects the same 

event, it is considered this is a true-positive (A∩B). However, if no event is detected by our tool 

in the video clip, further checking is required. With the ROSCO video player, audio alert is 

available to precisely locate the time of an event in the video clip. Then the further checking 

process for FP’s runs as follows: 1) locate the time of audio alert; 2) check the video around the 

alert to see if there is an observable near-miss; 3) if there is no observable near-miss such as no 

appearance of pedestrians around the bus or no obvious aggressive movement around the time of 

alert, this labeled event would be considered a FP (FP∈A∪B-A). 

Given the storage of videos over 10 TB, the identification of FN’s is more time consuming. 

Our method aims at minimizing the manual checking time and maximizing the probability of 

finding all the FN’s. The first step in identifying FN’s is to run our software on the entire video 

dataset, thus to largely reduce the manual checking on outputted events. False detections of road 

users would be then filtered out first in the manual checking process. For example, a tree 



20 

mistakenly recognized as a pedestrian will be discarded from the output immediately. Then the 

remaining detected events by our system are considered true events with the assumption that the 

KLT-based motion estimation process has no significant error. In the end, the events detected by 

our system but not the Shield+ are regarded as the FN’s (FN∈A∪B-B). Generally, given the 

limitation of the data available, perfectly recognizing all the FN’s may be challenging. On the one 

hand, the union set of two systems’ detected events (i.e, A∪B) may not accurately represent the 

ground truth of all events that should be extracted (S may not be exactly equal to A∪B). On the 

other hand, some of the “FN’s” may be generated just because of the differences in the detection 

framework of the two systems. However, with the proposed cost-effective bus-to-pedestrian near-

miss detection framework, this evaluation pipeline is efficient and effective to estimate the overall 

system detection performance. 

 

Figure 7.1 Relationships among three event sets, i.e., A: events detected by our system, B: 

events detected by Shield+ system, and S: ground truth. 

 

Events and video data from five transit agencies are utilized: Ben Franklin Transit, 

Community Transit, King County Metro, Kitsap Transit, and Pierce Transit. Table 7.1 shows the 
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summary statistics for the performance evaluation based on the videos have been fully processed 

so far. The total FP rate is about 3.21% and the FN rate is about 0.30%. In general, the Shield+ 

collision avoidance system demonstrates great performance. Although both the FP rate and FN 

rate are very low, the current system generates more FP’s than FN’s based on our evaluation. There 

are two typical FP patterns found during the testing period (See Figure 7.2). The first pattern is the 

false detection of road users, in which a collision warning is generated by the movement of the bus 

toward an object similar in shape to a pedestrian. For example, a standalone stop sign does not 

tend to trigger a warning, but a stop sign with cylinders around it would possibly does. The second 

typical pattern for FP’s involves pedestrians/bicyclists moving parallel to and on the left of the bus 

either in the same or opposite direction. In some instances, pedestrians are on sidewalks at some 

distance and not on a trajectory to collide with the bus. The second pattern does not generate FP’s 

for all buses, and may be caused by individual installation or parameter settings. Very few FN’s 

were identified and no strong patterns emerged. Late detections are defined as FN’s. Two example 

false-negatives identified by the proposed system are shown in Figure 7.3. Both (a) and (b) are 

detected by the Shield+ system but the warnings are late.  

Table 7.1 1 Evaluation on the detection performances of the collision avoidance system 

 

Ben Franklin 

Transit 

Community 

Transit 

King County 

Metro 

Kitsap 

Transit 

Pierce 

Transit 

Total 

Events 1640 1062 430 1477 1461 6070 

FP 111 24 7 39 14 195 

FN 3 4 4 2 5 18 

FP Rate 6.77% 2.26% 1.63% 2.64% 0.96% 3.21% 

FN Rate 0.18% 0.38% 0.93% 0.14% 0.34% 0.30% 
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(a)                                                                               (b) 

Figure 7.2 Two typical patterns of false-positive have been observed. 

 

(a)                                                                               (b) 

Figure 7.3 Two false-negatives identified by our system. Both (a) and (b) are detected by the 

Shield+ system but the warnings are late. 
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Chapter 8 Conclusions and Recommendations 

 A cost-effective framework for automated bus-to-pedestrian near-miss detection through 

onboard monocular vision is proposed in this project. It aims at automatically extracting bus-to-

pedestrian surrogate safety measure data, i.e., bus-to-pedestrian near-miss events, using onboard 

monocular camera. The framework incorporates a HOG pedestrian detector and KLT tracker to 

detect and track pedestrians appearing in the monocular camera. Then it calculates the region of 

interest and estimates motion in image coordinates. With known camera parameters, a camera 

model is built to find the correspondence between image coordinates and real-world coordinates 

of detected pedestrians. Using this correspondence, we calculate the relative speed and relative 

position information and then manage to obtain the near-miss indicators. This framework is among 

the first efforts for detecting bus-to-pedestrian near-misses by using onboard monocular video. It 

can be applied to both safety surrogate data collection and collision avoidance tasks for most types 

of vehicles. The experiment shows our system works reasonably well by the comparison with 

Rosco/MobilEye Shield+ system which includes four camera sensors.  

 Based on the experimental results and analyses in this study, future work is currently 

planned for the following aspects. First, future work will involve testing the system in more 

challenging scenarios such as bus approaching a crowd of pedestrians thus to further improve the 

overall performance. Second, errors in motion estimation may occur due to that some of the interest 

points may not come from the pedestrians but other objects appearing in the candidate windows. 

Hence, in future work, we plan to implement a method to filter out those extraneous interest points. 

Third, instead of validating the proposed framework with a vision-based system, it would be 

helpful to also compare it with more advanced systems such as a system incorporating both vision 

and radar sensors.  
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	Executive Summary 
	 Pedestrians are vulnerable road users in multi-modal transportation systems, and pedestrian safety has been addressing more attention recently under the trend of green travel and smart city applications. However, the percentage of pedestrian fatalities increases by 3% in the past decade while the total traffic fatality decreases. Specifically, bus-to-pedestrian collisions often result in severe injuries, fatalities and huge insurance losses. According to Washington State Transit Insurance Pool, a large por
	 This study fills the gap by proposing a framework to automatically detect bus-to-pedestrian near-misses through onboard monocular vision with real-time processing speed. The proposed detection framework has a different processing logic from previous vehicle-to-pedestrian conflict studies. First, our framework does not handle the complex background information in the moving onboard video directly. Instead, it tries to locate the pedestrians based on the vision pattern. After the pedestrian being detected an
	real-world value can be obtained. Specifically, our framework has four main stages: pedestrian detection in onboard video, motion estimation in the image coordinate, relative position, and speed calculation in the real-world coordinate, and near-miss detection. In the first stage, the well-known Histogram-of-gradient pedestrian detector is used to detect pedestrian within the camera vision. In the second stage, interest points inside the detected bounding box of a pedestrian are tracked with sparse optical 
	 The results turn out to be reasonably good by comparing with the events detected by a commercial system, which has multiple camera sensors installed. We have run the system on over one-month data, and the overall performance is promising. Over 30 hours of data have been examined in detail for quantified evaluation. The system processes in a nearly real-time manner and yields over 85% detection overlap rate with the detected events from a well-developed MobilEye Shield+ system. Two additional experiments ar
	 
	 
	 
	 
	 
	 
	 
	Chapter 1 Introduction 
	 According to a report published by National Highway Traffic Safety Association (NHTSA) in 2015 (NHTSA, 2015), the number of total motor vehicle fatalities in the U.S. keeps decreased from 42,836 in 2004 to 32,719 in 2013. However, the annual number of pedestrian fatalities remained at the about the same level during the past decade. As a result, pedestrian fatalities as a percentage of total fatalities increased from 11% to 14%. And according to Washington State Transit Insurance Pool (WSTIP), despite pede
	 Researchers and engineers are aware of the lack of pedestrian collision data and started looking for surrogate safety measures. Despite slightly differing definitions in several studies, these surrogate events are commonly called near-misses. A near-miss is the conflict between road users that requires sudden evasive action and has the potential to develop into a collision. Collisions and near-miss events both can be used to measure the safety of certain locations or scenarios. (Guo et al., 2010) Near-miss
	 Near misses must be detected and extracted from specific data sources. Typically, the data sources for near-miss extraction will include records spanning a long time period, such as video records (Ismail et al., 2009; Laureshyn et al., 2010), records from in-vehicle sensors (Matsui et al., 2013), or even output from a simulation model of a certain location (Gettman and Head, 2003). Initially, surrogate safety measures were extracted manually, which was very inefficient and inaccurate (Chin and Quek, 1997; 
	 There are several advantages in using onboard monocular cameras as near-miss sensors: compared with surveillance video cameras which are installed at fixed locations with limited view coverage, onboard cameras are moving vision sensors that cover much larger areas; compared with using multiple in-vehicle sensors such as GPS units, radar sensors, and stereo vision systems, onboard monocular cameras are much cheaper, but may need more sophisticated algorithms to reach similar performance. Considering that ma
	 However, challenges do exist in near-miss detection in monocular cameras. First, with the moving background and moving foreground in the video, traditional background segmentation methods would not work as well as for stationary roadway surveillance videos (Zhang et al., 2007); also, in onboard front-facing cameras, the background points in different locations of a video frame 
	do not share a similar motion, thereby identifying background points using “similar motion criterion” would get inaccurate results (Ke et al., 2017). With the recent progress in vision-based pedestrian detection and tracking, several studies have been completed showing that pedestrian detection and tracking algorithms could be potentially applied in vehicle-to-pedestrian collision avoidance and near-miss detection. However, these studies performed all calculations using two-dimensional image coordinates ins
	 In this study, we propose a novel framework to extract bus-to-pedestrian near-misses from onboard monocular cameras automatically. This framework is composed of four main stages: 1) pedestrian detection, 2) motion estimation, 3) bus-to-pedestrian relative position and speed calculation, and 4) near-miss detection. In pedestrian detection, we made use of the well-known histogram of gradient (HOG) pedestrian detector. (Dalal and Triggs, 2005) A Kanade-Lucas-Tomasi (KLT) interest points tracker (Lucas and Kan
	described in this report appears to be among the first efforts. Our study addresses several challenging issues including the moving video background issue, depth estimation, and real-world motion information extraction only using monocular video. 
	  
	Chapter 2 Literature Review 
	2.1 Surrogate Safety Measures 
	 Research on surrogate safety measures for pedestrian collisions has been on-going for several decades. Research initially focused on vehicle-to-vehicle near-misses on highways. (Zegeer and Head, 1977) In terms of research objective, previous studies can be roughly divided into two categories: development of traffic near-miss (conflict) analysis frameworks (Laureshyn et al., 2013; Matsui et al., 2013; Minderhoud and Bovy, 2001; Chin and Quek, 1997; Guo et al., 2010; Zegeer and Deen, 1977; Gettman and Head, 
	 Most analysis frameworks include time-to-collision (TTC) as a main indicator, although other indicators may be involved. There is, however, a lack of standard definitions for the indicator and analysis framework (Chin and Quek, 1997). Minderhoud et al. described two extended TTC measures for road traffic safety assessment (Minderhoud and Bovy, 2001). These two indicators consider the full course of vehicles over time and space, thereby giving a more comprehensive picture. 
	 
	2.2 Vehicle-to-Pedestrian Near-Miss Extraction 
	 When traffic near-miss studies were first conducted, data was manually collected (Chin and Quek, 1997; Guo et al., 2010; Zegeer and Deen, 1977). There are three main disadvantages in manual data collection: first, it is very time consuming for one or several people to stand at a specific location or go through recorded videos to find the near-miss events; second, different people have different judgements of what constitutes a near-miss event, it is very hard to guarantee 
	the accuracy; third, it is impossible to quantitatively obtain safety measures of an event. As the demand for surrogate safety data has been increasing, the manual collection is no longer practical.  
	 Ismail et al. developed an efficient method for vehicle-to-pedestrian near-miss detection using surveillance video data (Ismail et al., 2009). Their work is one of the key milestones in this field since their method could potentially be applied to all roadway surveillance videos. Malkhamah et al. developed an automatic method of safety monitoring using loop data (Malkhamah et al., 2005). Since loop data is still the main data source for traffic monitoring, this work makes it possible to detect conflicts on
	  
	Chapter 3 Study Site/Data 
	 Data were collected on a King County Metro transit bus operating in downtown Seattle. Figure 3.1(a) replays the map of the bus trip on May 20, 2016. Onboard video data is collected by a Rosco Dual-Vision monocular camera and recorder system. The Rosco/MobilEye Shield Plus system is a vision-based vehicle, pedestrian, and bicyclist collision warning system designed for buses. This system has four cameras installed on the bus and can detect vehicle-pedestrian conflict events. The camera-based Shield+ system 
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	Figure 3.1 (a) Map of King County Metro May 20, 2016 bus trip.  (b) Sample frame from the front-facing video Dual-Vision camera. 
	Chapter 4 Methodology 
	 The proposed detection framework (see Figure 4.1) has a different processing logic from previous vehicle-to-pedestrian conflict studies. Our framework does not handle the complex background information in the moving onboard video, but locates the pedestrian directly. Also, after the pedestrian is detected and tracked, we conduct the calculation in real-world coordinates instead of image coordinates. In the first stage, the HOG pedestrian detector is used to detect pedestrians within the camera’s vision (Da
	4.1 Pedestrian Detection in Onboard Monocular Video 
	 Pedestrian detection often plays a key role in multi-modal transportation engineering. Efficient and accurate pedestrian detection approaches would benefit traffic surveillance from many perspectives. Pedestrian detection is mainly based on the unique features of pedestrians. Generally, there are three types of single features used in pedestrian detection: gradient-based features, shape-based features, and motion-based features (Dollar et al., 2012). Motion-based features are not suitable for pedestrian de
	long as they are based on the pedestrian pattern instead of motion information. In this paper, HOG is implemented as the pedestrian detector and the candidate pedestrian windows are identified using the sliding window approach. The input of the pedestrian detection is a video frame and the output is rectangle window(s) representing the pedestrian(s). In order for the following description, we denote 𝑝1_𝑖𝑚𝑔 the point where the detected pedestrian’s feet on. In other words, 𝑝1_𝑖𝑚𝑔is the midpoint of th
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	Figure 4.1 The proposed framework for bus-to-pedestrian near-miss detection through onboard monocular vision 
	4.2 Motion Estimation 
	 In traffic video analysis, KLT tracker is very effective and has been widely used in motion analysis not only in surveillance videos with fixed background (Ismail et al., 2009, Kanhere et al., 2010) but also in aerial videos with moving background (Ke et al., 2016, Shastry and Schowengerdt, 2005). However, in onboard monocular videos, background motion is much more complex than that in either surveillance videos or aerial videos. Thus, instead of tracking points in the background and clustering them, in ou
	𝑝2_𝑖𝑚𝑔=𝑝1_𝑖𝑚𝑔+𝑚.                                                                (1) 
	4.3 Relative Position and Speed Estimation 
	 With the pedestrian detected and motion m obtained, we developed a method to calculate the relative position and speed through monocular vision. In the image coordinate, as defined in the last sub-section, 𝑝1_𝑖𝑚𝑔 and 𝑝2_𝑖𝑚𝑔 are the pedestrian locations in two frames (see Figure 4.2(a)). We calculate their corresponding points (see Figure 4.2(b)) in the top-view of the real-world coordinate through a camera model as follows.  
	 Let 𝐶(𝑢0,𝑣0) be the center of the image coordinate and (𝑢1,𝑣1) is the position of 𝑝1_𝑖𝑚𝑔, then  
	𝑑𝑢=𝑢1−𝑢0                                                                    (2) 
	𝑑𝑣=𝑣1−𝑣0,                                                                                                (3) 
	where du and dv are the differences between 𝑝1_𝑖𝑚𝑔 and the image center. 
	 To find the correspondence, four camera parameters are needed: camera focal length f, pixel length l, camera installation height h, and camera tilt angle θ. In the top-view of the real-world coordinate, the origin O(0,0) is the camera center, whose location and motion are basically the same as the vehicle. Points 𝑝1_𝑤𝑙𝑑 and 𝑝2_𝑤𝑙𝑑 are the correspondences of 𝑝1_𝑖𝑚𝑔 and 𝑝2_𝑖𝑚𝑔, respectively. Let x1 and y1 be the x-coordinate and y-coordinate of 𝑝1_𝑖𝑚𝑔. Then, x1 and y1 are related to du an
	where ϕ is the angle between the ground and the line connecting 𝑝1_𝑤𝑙𝑑 and O(0,0). Thus, the depth value y1 can be obtained, that is, 𝑦1=ℎarctan (𝜙).                                                                  (5) 
	Then, with y1 and du known, x1 can be computed by the relation 𝑥1=𝑙×𝑑𝑢𝑓×𝑦1.                                                                  (6) 
	In this way, the relative position of the pedestrian to the vehicle is obtained. Similar to the calculation of x1 and y1, x2 and y2 can be calculated. Let fr be the frame rate, then the relative speed v between pedestrian and the vehicle is 𝑣=√(𝑥2−𝑥1)2+(𝑦2−𝑦1)2×𝑓𝑟.                                                 (7) 
	Specifically, for relative speed components vx and vy in the x-axis and y-axis respectively, we have 𝑣𝑥=(𝑥2−𝑥1)×𝑓𝑟,                                                           (8) 𝑣𝑦=(𝑦2−𝑦1)×𝑓𝑟.                                                           (9) 
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	Figure 4.2 Method to find the correspondence between image coordinates and real-world coordinates. 
	 
	Near-miss Detection 
	 With the relative position and speed estimated through monocular vision, events can be judged by calculating near-miss indicators. The most commonly used indicator is TTC (2-5) and we also use TTC as the major near-miss indicator in this study, which can be obtained with the following equation 𝑇𝑇𝐶=𝑦1𝑣𝑦,                                                                      (10) 
	where y1 is the y-coordinate of the detected pedestrian in the real-world coordinate (see Figure 4.2(b)).  
	 However, Eq. (10) alone is not sufficient to determine whether there is a near-miss, because even if the value got by Eq. (10) is very small, it is possible the horizontal component of the relative speed, i.e., vx, is very large so that the pedestrian would not hit the vehicle following the current moving direction. Thus, another indicator is needed to be set to judge if the conflict will happen 
	following the current relative speed on the x-axis. We define this indicator as distance-to-safety (DTS), which can be calculated as follows 𝐷𝑇𝑆=𝑣𝑥×𝑦1𝑣𝑦.                                                             (11)  
	Therefore, if both TTC and DTS are within their respective ranges for near-miss detection, i.e., TTC < TTCthreshold and –T < DTS < T, where TTCthreshold and T are the thresholds. T is shown in Figure 4.2(b), and it should be set no smaller than half of the vehicle width. 
	  
	Chapter 5 Results 
	 More than 30 hours of onboard monocular video data were used to test the performance of the proposed near-miss detection method. Figure 5.1 shows two representative samples identified as near-misses by our system. In (a), the vehicle was approaching a stop sign when two pedestrians were crossing the street. One of the pedestrians was detected as having the potential to collide with the vehicle if no evasive action was taken. In (b), a pedestrian standing at a bus stop was detected when the bus approached t
	 Video detection results are compared with events logged by the Rosco/MobilEye Shield+ system with multiple camera sensors. Different TTC thresholds are used in the experiments, and the results are presented in Table 5.1. In general, the corresponding detection overlap rate (Overlap rate = (NTotalDetection － NDifferentDetection) / NTotalDetection) between the two systems ranges from 81.5% to 90.7%, with an average overlap rate of 86.9%. The largest overlap rate occurs when the TTC threshold is set to 2s. Th
	1) Some events occur at the side of the bus, and these events are not recorded by the onboard monocular camera. These events cannot be detected by our system because the target object (i.e., the pedestrian) does not appear in the view of the front-facing camera. 
	1) Some events occur at the side of the bus, and these events are not recorded by the onboard monocular camera. These events cannot be detected by our system because the target object (i.e., the pedestrian) does not appear in the view of the front-facing camera. 
	1) Some events occur at the side of the bus, and these events are not recorded by the onboard monocular camera. These events cannot be detected by our system because the target object (i.e., the pedestrian) does not appear in the view of the front-facing camera. 

	2) Some events detected by our system involve a pedestrian running towards the front of a stopped bus; a bus with no speed deactivates the Rosco/MobilEye system’s bus-to-pedestrian near-miss detection function but the relative motion calculated by our system still indicates a potential conflict. 
	2) Some events detected by our system involve a pedestrian running towards the front of a stopped bus; a bus with no speed deactivates the Rosco/MobilEye system’s bus-to-pedestrian near-miss detection function but the relative motion calculated by our system still indicates a potential conflict. 


	3) Some interest points inside the detected rectangle may come from objects other than the pedestrian such as corner points of lane markings, which could result in inaccurate motion estimation. 
	3) Some interest points inside the detected rectangle may come from objects other than the pedestrian such as corner points of lane markings, which could result in inaccurate motion estimation. 
	3) Some interest points inside the detected rectangle may come from objects other than the pedestrian such as corner points of lane markings, which could result in inaccurate motion estimation. 


	 
	Table 5.1 Summary of the comparison results with the Rosco/MobilEye Shield+  system 
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	Figure
	Figure 5.1 Sample frames showing the representative near-miss events detected by the proposed system. 
	 
	  
	Chapter 6 Application of the Framework for Near-Miss Hotspot Identification 
	 Besides safety surrogate data collection, another purpose for developing a cost-effective bus-to-pedestrian near-miss detection framework is to automatically identify hotspots and geographic distributions of events, to help drivers anticipate potential collisions in higher-risk locations. With the event data collected by our system, several plots displaying the distribution of the events are shown in Figure 6.1. It can be seen that most events occur at the right of the vehicle. This is reasonable since whe
	 Also, we can see that the region with densest events are different in the image coordinate ((a), (b)) and the real-world coordinate ((c), (d)): the densest region in the image coordinate is the top right region, but in the real-world coordinate it is the bottom right region. That is to say, most near-misses occur at a relatively farther distance to the vehicle in the image coordinate intuitively, but closer to the vehicle in the real-world coordinate. This result is surprising at first glance, but the reas
	in the image space. These findings may help drivers improve driving behavior and overall safety by knowing the distribution of near-misses. 
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	Figure 6.1 Scatter plots and heat maps showing the distribution of near-misses in image coordinates (a) and (b) and top-view of real-world coordinates, (c) and (d). 
	 
	  
	Chapter 7 Application of the Framework for Evaluating Emerging Technologies 
	Due to the cost-effectiveness of the proposed near-miss detection framework, it becomes a potential tool to assist in efficiently evaluating emerging technologies in intelligent transportation systems and autonomous driving. We explore this potential by using the framework to evaluate the detection performance of the Rosco/MobilEye Shield+ collision avoidance system. Specifically, we collect over 10 TB of monocular video data and bus-to-pedestrian near-miss events data on 38 transit buses equipped with the 
	It is important to determine how to define a false positive (FP) and false negative (FN) in order to maximize the identification accuracy. As aforementioned, the major indicator in our framework for near-miss detection is TTC. In order to set an appropriate TTC threshold for evaluation, we define a detection overlap rate (OR) to find the TTC threshold that would maximize OR, which is described with Eq. (12), 
	 𝑂𝑅=𝐴∩𝐵𝐴∪𝐵                                                                      (12) 
	 
	where A and B are the sets of detections by each of the two technologies, i.e., our system and Shield+ system (see Figure 7.1). OR ranges from 0 to 1, and a larger OR would indicate a better TTC threshold with our tool to approximate the detection performance of Shield+ system. We have tested TTC threshold values from 1s to 5s, and find that 2s results in the largest OR about 0.9, which basically indicates 90 percent of the total events detected by either one of the two systems are also detected by both sys
	  The identification of FP’s is described in this paragraph. We run our framework on video clips labeled with events. If the Shield+ collision avoidance system also detects the same event, it is considered this is a true-positive (A∩B). However, if no event is detected by our tool in the video clip, further checking is required. With the ROSCO video player, audio alert is available to precisely locate the time of an event in the video clip. Then the further checking process for FP’s runs as follows: 1) loca
	Given the storage of videos over 10 TB, the identification of FN’s is more time consuming. Our method aims at minimizing the manual checking time and maximizing the probability of finding all the FN’s. The first step in identifying FN’s is to run our software on the entire video dataset, thus to largely reduce the manual checking on outputted events. False detections of road users would be then filtered out first in the manual checking process. For example, a tree 
	mistakenly recognized as a pedestrian will be discarded from the output immediately. Then the remaining detected events by our system are considered true events with the assumption that the KLT-based motion estimation process has no significant error. In the end, the events detected by our system but not the Shield+ are regarded as the FN’s (FN∈A∪B-B). Generally, given the limitation of the data available, perfectly recognizing all the FN’s may be challenging. On the one hand, the union set of two systems’ 
	 
	Figure
	Figure 7.1 Relationships among three event sets, i.e., A: events detected by our system, B: events detected by Shield+ system, and S: ground truth. 
	 
	Events and video data from five transit agencies are utilized: Ben Franklin Transit, Community Transit, King County Metro, Kitsap Transit, and Pierce Transit. Table 7.1 shows the 
	summary statistics for the performance evaluation based on the videos have been fully processed so far. The total FP rate is about 3.21% and the FN rate is about 0.30%. In general, the Shield+ collision avoidance system demonstrates great performance. Although both the FP rate and FN rate are very low, the current system generates more FP’s than FN’s based on our evaluation. There are two typical FP patterns found during the testing period (See Figure 7.2). The first pattern is the false detection of road u
	Table 7.1 1 Evaluation on the detection performances of the collision avoidance system 
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	Figure
	(a)                                                                               (b) 
	Figure 7.2 Two typical patterns of false-positive have been observed. 
	 
	Figure
	(a)                                                                               (b) 
	Figure 7.3 Two false-negatives identified by our system. Both (a) and (b) are detected by the Shield+ system but the warnings are late. 
	Chapter 8 Conclusions and Recommendations 
	 A cost-effective framework for automated bus-to-pedestrian near-miss detection through onboard monocular vision is proposed in this project. It aims at automatically extracting bus-to-pedestrian surrogate safety measure data, i.e., bus-to-pedestrian near-miss events, using onboard monocular camera. The framework incorporates a HOG pedestrian detector and KLT tracker to detect and track pedestrians appearing in the monocular camera. Then it calculates the region of interest and estimates motion in image coo
	 Based on the experimental results and analyses in this study, future work is currently planned for the following aspects. First, future work will involve testing the system in more challenging scenarios such as bus approaching a crowd of pedestrians thus to further improve the overall performance. Second, errors in motion estimation may occur due to that some of the interest points may not come from the pedestrians but other objects appearing in the candidate windows. Hence, in future work, we plan to impl
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